
1

All-Flash
NVMe(PM1725a)
Reference
Architecture
Red Hat Ceph Storage 3.2 with BlueStore

Introduction and Ceph overview

• Executive Summary

• Introduction

• Ceph distributed architecture overview

• Ceph BlueStore

Introducing the Samsung PM1725a NVMe SSD
Samsung NVMe SSD Reference Architecture and elements
• Samsung NVMe SSD Reference Architecture

• Software

 - Red Hat® Ceph Storage

 - Red Hat Enterprise Linux®

 - Ceph optimized configurations

• Hardware

 - Samsung PM1725a NVMe SSD

 - Ceph Nodes

 - Networks

Configurations and Benchmark results

• Operational planning considerations

• Baseline test results

• Benchmark configurations and results

 - 4 KB Random write workload

 - 4 KB Random read workload

 - 128 KB Sequential write workload

 - 128 KB Sequential read workload

Conclusion

Appendix

Table of contents

3

Introduction and Ceph overview

Ceph distributed architecture overview
A Ceph storage cluster is built from large numbers of Ceph nodes for scalability, fault tolerance, and performance. Each node is based on

commodity hardware and uses intelligent Ceph daemons that communicate with each other to:

• Store and retrieve data

• Replicate data

• Monitor and report on cluster health

• Redistribute data dynamically (remap and backfill)

• Ensure data integrity (scrubbing)

• Detect and recover from faults and failures

From the Ceph client interface where reads and writes operations are shown, a Ceph storage cluster looks like a simple pool where data is

stored. However, the storage cluster performs many complex operations in a way that is completely transparent at the client interface level.

Ceph clients and Ceph object storage daemons (Ceph OSD daemons or OSDs) both use the CRUSH (controlled replication under scalable

hashing) algorithm for storage and retrieval of objects.

From the Ceph client standpoint, the storage cluster is very simple. When a Ceph client reads or writes data, it connects to a logical storage

pool in the Ceph cluster. Figure 1 illustrates the overall Ceph architecture, featuring concepts that are described in the sections that follow.

Introduction
Enterprise storage infrastructure and related technologies continue to evolve year after year. In particular, as IoT, 5G, AI, and ML technologies

are gaining attention, the demand for SDS (software-defined storage) solutions based on clustered storage servers is also increasing. Ceph

has emerged as a leading SDS solution that takes on high performance intensive workloads. Therefore, high throughput and low latency

features of storage devices are important factors that improve the overall performance of the Ceph cluster. Adoption of a Ceph cluster on

a NVMe SSD will maximize performance improvement. So, Samsung designed Ceph clusters based on all-flash NVMe SSDs and conducted

various tests to provide Ceph users with optimized Ceph configurations.

Executive Summary
This document introduces Samsung’s NVMe SSD Reference Architecture for providing optimal performance in Red Hat ® Ceph storage with

Samsung PM1725a NVMe SSD on an x86 architecture-based storage cluster. It also provides an optimized configuration for Ceph clusters and

their performance benchmark results.

Samsung configured five storage nodes based on all-flash with PM1725a NVMe SSD, resulting in 4 KB random read performance surpassing 2

million IOPS. The table below shows the results for the performance and latency evaluated in this Reference Architecture. In the sections that

follow, we will cover the details of the Ceph and Samsung Reference Architecture.

4 KB Random Workload

Write Read

Avg. Throughput (KIOPS) 493 2255

Avg. 99.99%th Latency (ms) 74.20 153.21

Avg. Latency (ms) 12.97 2.85

128 KB Sequential Workload

Write Read

Avg. Throughput (GB/s) 18.8 51.6

Table 1: Summary of 4 KB random workload Table 2: Summary of 128 KB sequential workload

4

Introduction and Ceph overview

Source : Red Hat Ceph Architecture Overview
Figure 1: Clients write to Ceph storage pools while the CRUSH ruleset determines how placement groups are distributed across OSDs(object storage daemons)

- Red Hat Ceph architecture overview : https://www.redhat.com/en/resources/resources-how-configure-red-hat-ceph-storage-html

• Pools: A Ceph storage cluster stores data objects in logical dynamic partitions called pools. Pools can be created for particular data types,

such as for block devices, object gateways, or simply to separate user groups. The Ceph pool configuration dictates the number of object

replicas and the number of PGs (placement groups) in the pool. Ceph storage pools can be either replicated or erasure coded, according to

the application and cost model. Additionally, pools can “take root” at any position in the CRUSH hierarchy, allowing placement on groups of

servers with differing performance characteristics—allowing storage to be optimized for different workloads.

• Placement groups: Ceph maps objects to PGs (placement groups). PGs are shards or fragments of a logical object pool that are composed

of a group of Ceph OSD daemons that are in a peering relationship. Placement groups provide a means of creating replication or erasure

coding groups of coarser granularity than on a per object basis. A larger number of placement groups (e.g., 200 per OSD or more) leads to

better balancing.

• CRUSH ruleset: The CRUSH algorithm provides controlled, scalable, and declustered placement of replicated or erasure-coded data within

Ceph and determines how to store and retrieve data by computing data storage locations. CRUSH empowers Ceph clients to communicate

with OSDs directly, rather than through a centralized server or broker. By determining the method for storing and retrieving data by an

algorithm, Ceph avoids single points of failure, performance bottlenecks, and physical limits to scalability.

• Ceph monitors (MONs): Before Ceph clients can read or write data, they must contact a Ceph MON to obtain the current cluster map. A

Ceph storage cluster can operate with a single monitor, but this introduces a single point of failure. For added reliability and fault tolerance,

Ceph supports an odd number of monitors in a quorum (typically three or five for small to mid-sized clusters). Consensus among various

monitor instances ensures consistent knowledge about the cluster’s state.

• Ceph OSD daemons: In a Ceph cluster, Ceph OSD daemons store data and handle data replication, recovery, backfilling, and rebalancing.

They also provide some cluster state information to Ceph monitors by checking other Ceph OSD daemons with a heartbeat mechanism.

A Ceph storage cluster that is configured to keep three replicas of every object requires a minimum of three Ceph OSD daemons, two

of which need to be operational to successfully process write requests. A rough equivalent to Ceph OSD daemons is a file system on a

physical disk drive.

Client interface Layer

Objects in pools

CRUSH ruleset

Placement groups

Ceph nodes:
-OSD hosts
-Monitors(MONs)

OSD1 OSD2 OSD3 OSD4 OSD5 OSD6
MON1

MON2

MON3

RADOS
LIBRADOS RADOSGW RBD

PGPGPGPGPGPG

PGPGPGPGPGPG

PGPGPGPGPGPG

PGPGPGPGPGPG

PGPGPGPGPGPG

PGPGPGPGPGPG

PGPGPGPGPGPG

PGPGPGPGPGPG

obj

obj

obj

obj

obj

obj

obj

obj

Pool ID (HashObject)

obj

obj

obj

obj

obj

obj

obj

obj

Pool ID (HashObject)

CRUSH map

5

Introduction and Ceph overview

- Bluestore : https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/3/html/administration_guide/osd-bluestore

Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.
Figure 2: Comparing the structure of FileStore and BlueStore

Ceph BlueStore
BlueStore is a new back end for the OSD daemons. Unlike the original FileStore back end, BlueStore stores objects directly on the block

devices without any file system interface. This improves the performance of the cluster.

The following are some of the main features of using BlueStore:

• Direct management of storage devices: BlueStore consumes raw block devices or partitions. This prevents any intervening layers of

abstraction, such as local file systems like XFS, that might limit performance or add complexity.

• Metadata management with RocksDB: BlueStore uses the RocksDB key-value database to manage internal metadata, such as the

mapping from object names to block locations on a disk.

• Full data and metadata checksumming: By default, all data and metadata written to BlueStore is protected by one or more checksums. No

data or metadata are read from disk or returned to the user without verification.

• Efficient copy-on-write: The Ceph Block Device and Ceph File System snapshots rely on a copy-on-write clone mechanism that is

efficiently implemented in BlueStore. This results in efficient I/O both for regular snapshots and for erasure coded pools that rely on

cloning to implement efficient two-phase commits.

• No large double-writes: BlueStore first writes any new data to unallocated space on a block device, and then commits a RocksDB

transaction that updates the object metadata to reference the new region of the disk. It only falls back to a write-ahead journaling scheme

when the write operation is below a configurable size threshold, similar to how FileStore operates.

• Multi-device support: BlueStore can use multiple block devices for storing different data. For example, HDD for the data, SSD for

metadata, NVM (non-volatile memory), or NVRAM (non-volatile random-access memory) or persistent memory for the RocksDB WAL

(write-ahead log).

BlueStore

Data metadata

Storage

RocksDB

BlueFS

FileStore

Data omap

XFS

Storage

LevelDB

6

The Samsung PM1725a SSD is optimized to excel in virtually any data center scenario. This enterprise-level, ultra-high performance SSD

provides excellent random read performance and is particularly suitable for read-intensive data center applications. When compared with

other standardized Samsung SSDs, the PM1725a SSD provides high random read IOPS performance. The PM1725a features Samsung 3rd-

generation TLC V-NAND technology, which significantly reduces performance and reliability issues caused by the capacity limitations

of planar NAND technologies. The Samsung V-NAND technology delivers reliable and consistent performance at lower costs for today's

demanding data-centric world.

Samsung PM1725a NVMe SSD delivers:

• Exceptional value: The PM1725a utilizes Samsung V-NAND flash memory and employs cost-effective TLC (triple-level cell) flash memory,

which delivers higher reliability over MLC (multi-level cell) planar NAND flash memory SSDs. With this architecture, the PM1725a can

economically deliver enterprise-level performance.

• Consistently high performance: The PM1725a HHHL (half-height, half-length) card delivers a wide bandwidth of up to 6,200/2,600 MB/

s sequential R/W speeds respectively, using under 23 W of power. It delivers up to 1,000K and 180K IOPS for random 4 KB read and write,

respectively. The PM1725a 2.5-inch SSD delivers a bandwidth of up to 3,300/2,600 MB/s for sequential R/W and up to 800K/180K IOPS for

random 4 KB R/W, respectively.

• Outstanding reliability: Although the PM1725a employs TLC V-NAND flash memory, it is capable of 5 DWPD (drive writes per day) for 5

years. This rate translates to writing a total of 32 TB each day during that time, which means users can write 6,400 files of 5 GB-equivalent

data every day. This level of reliability is more than sufficient for enterprise storage systems that have to perform ultrafast transmissions

of large amounts of data.

• High density: By fitting more memory into a V-NAND chip, it provides significantly more capacities of up to 6.4 TB in both the PM1725a

2.5-inch and HHHL card SSDs. Depending on your storage requirements and applications, 800 GB, 1.6 TB, 3.2 TB, and 6.4 TB capacities are

available.

Introducing the Samsung PM1725a NVMe SSD

Table 3: Samsung PM1725a NVMe SSD specifications

Samsung PM1725a NVMe SSD

Form factor 2.5 inch HHHL

Capacity 800 GB, 1.6 TB, 3.2 TB, 6.4 TB 1.6 TB, 3.2 TB, 6.4 TB

Host interface PCI Express Gen3 x4, NVMe PCI Express Gen3 x8, NVMe

Sequential read Up to 3,300 MB/s Up to 6,200 MB/s

Sequential write Up to 2,600 MB/s Up to 2,600 MB/s

Random read Up to 800,000 IOPS Up to 1,000,000 IOPS

Random write Up to 180,000 IOPS Up to 180,000 IOPS

NAND flash memory Samsung V-NAND

MTBF 2,000,000 hours

Endurance 5 DWPD for 5 years

- Sequential performance measured using FIO with 128 KB block size, queue depth 32, number of jobs 1.
- Random performance measured using FIO with 4 KB block size, queue depth 32, number of jobs 8.
- Actual performance may vary depending on use conditions and environment

7

Samsung NVMe SSD Reference Architecture and elements

Samsung NVMe SSD Reference Architecture
Samsung designed this Reference Architecture to maximize and optimize the performance of all-flash based Ceph clusters. This Reference

Architecture consists of five storage nodes and is based on all-flash NVMe SSDs with Samsung PM1725a SSDs, which provide ultra-high

performance. Since Ceph clusters involve complex and various parameters, Samsung has applied optimal parameters to maximize its

performance. In this Reference Architecture, a Ceph cluster was connected with 100 GbE two separated networks (public and cluster) to

communicate with each other. Figure 3 provides an overall design of the Reference Architecture, and following sections cover the details.

Software
Red Hat® Ceph Storage

Designed for the cloud, Red Hat Ceph Storage significantly reduces the cost of storing enterprise data and helps to manage exponential data

growth—efficiently and automatically. Delivered in a self-healing, self-managing platform, Red Hat Ceph Storage handles data management

so that administrators can focus on improving data availability for business. The key benefits are:

• Value

Significantly lowers the cost of storing data. Lays a foundation for managing its exponential growth at a low cost per gigabyte.

• Enterprise readiness

Integrates tightly with OpenStack® and provides advanced block storage capabilities that work just like a traditional block storage device

but with hardware flexibility and massive scalability.

• Longevity

Starts with block storage and grows into object storage, or vice versa. Integrates with existing storage infrastructure easily.

• Expert backed

Takes advantage of the expertise of Ceph's creators and primary sponsors through professional services and training.

Figure 3: Samsung NVMe SSD Reference Architecture for Ceph cluster
Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.

100GbE Network Switch (x2)

Cluster Network

Public Network
Storage Node (x5)

Ceph OSD + MON + MGR

Ceph OSD

Ceph OSD

Ceph OSD

Ceph OSD

Samsung all-flash NVMe SSD
based storage node

Red Hat Enterprise Linux 7.6

Samsung Ceph configurations
for maximize performance

Red Hat Ceph Storage 3.2

Samsung PM1725a (x10)

D
RA

M
(x

8)

10
0G

bE
N

IC
 (x

2)x86 CPU

8

Samsung NVMe SSD Reference Architecture and elements

Red Hat Enterprise Linux

With Red Hat® Enterprise Linux®, a platform with unparalleled stability and flexibility, businesses can reallocate infrastructure resources

toward meeting their next challenges instead of just maintaining the status quo.

The key benefits are:

• Freedom through stability

Business applications require a tested, proven, and predictable platform. Red Hat Enterprise Linux frees IT personnel to deliver meaningful

business results by providing exceptional reliability and security.

• An ecosystem of solutions and support

With a Red Hat Enterprise Linux subscription, administrators are connected to the industry's largest ecosystem of partners, customers,

and experts that support and accelerate success for organizations.

• Confidence through flexibility

Red Hat Enterprise Linux gives you the flexibility to tailor your infrastructure for business needs now and in the future. As markets shift

and technologies evolve, you'll have the agility, adaptability, and performance to succeed.

Ceph optimized configurations

This Reference Architecture is based on Red Hat Ceph Storage 3.2 (Luminous 12.2.8). It introduces a BlueStore for new backend storage and it

is used by default when deploying new OSDs. In addition, Ceph has various parameters and performance can vary depending on how it is set

up. All tests of Ceph cluster were conducted based on the below configurations. And the appendix at the end of this document is the various

parameters that are tuned and used in Ceph clusters for this Reference Architecture.

Table 4: Ceph configurations in Samsung Reference Architecture

Details

Ceph version Red Hat Ceph Storage 3.2 (Luminous 12.2.8)

OSD backend storage BlueStore

of OSD daemon 80

OSDs per NVMe SSD 2

Replication factor 2x

of PG (Placement Group) 8192

Samsung Ceph parameters ceph.conf, osds.yml, all.yml (Appendix)

9

Hardware
Samsung PM1725a NVMe SSD

Samsung PM1725a NVMe SSD delivers exceptional value, consistently high performance, outstanding reliability, and high density, putting

an end to bottlenecks in performance and efficiency . In this Reference Architecture, each storage node was based on an all-flash NVMe SSD

using Samsung PM1725a.

Samsung NVMe SSD Reference Architecture and elements

Ceph storage nodes

Ceph storage nodes use x86 Intel Xeon architecture platforms with Samsung PM1725a and additional storage for local operating systems.

These nodes must have a NIC (Network Interface Card) to connect with Ceph clients, monitors, and OSDs.

Table 5: Ceph storage node details

Storage nodes (x5)

Processor (x2) Intel® Xeon® Gold 6152 CPU 2.10 GHz

DRAM (x8) Samsung 16 GB DDR4-2400 MT/s, (128 GB per node)

NVMe SSD (x10) Samsung PM1725a NVMe SSD, 1.6 TB , 2.5 inch form factor

SATA SSD (x1) Samsung 850 EVO SATA SSD

NIC (x1) Mellanox ConnectX®-5 MCX516A-CCAT Dual-Port adapter (100 GbE)

Networks

Ceph storage nodes configure two separated networks. One is used as the public network (Monitors and clients), and other as the cluster

network (Heart-beating, replication, peering, recovery). We use 100 GbE Mellanox ConnectX®-5 NICs with 100 GbE Mellanox MSN2700-CS2F

Network switches for throughput-intensive workloads and performance-optimized Ceph clusters.

Table 6: Network device details

Network devices

Network Switch (x2) Mellanox MSN2700-CS2F 1U Ethernet switch (100 GbE)

NIC (x10) Mellanox ConnectX®-5 MCX516A-CCAT Dual-Port adapter (100 GbE)

10

Configurations and Benchmark results

Operational planning considerations
This section presents general guidance on operational planning for deploying high-performance Ceph storage clusters using Samsung NVMe
SSDs.

• Storage nodes: It is recommended that at least three storage nodes be deployed to a Ceph cluster for redundancy and high availability.

• Monitor nodes: It is recommended that an odd number of monitor nodes be deployed. Each Ceph cluster can run one monitor node, but

three or more monitors are used in a production cluster. Monitor nodes do not need to have high performance CPUs; they would benefit

from high performance SSDs to store monitor map data.

• Replication factor: Given the better MTBF and MTTR of flash-based media, many Ceph customers have chosen to run 2x replications in

production when deploying OSDs on flash. This differs from magnetic media deployments, which typically use 3x replication.

• CPU sizing: Ceph OSDs intensively uses CPU to calculate data placement and dynamically redistributed their load. Therefore, a higher CPU

core count results in higher performance in Ceph for IO intensive workloads.

• OSDs per SSD: An appropriate number of OSDs should be used, as the number of OSDs per SSD affects the performance. Too many OSDs

per SSD may negatively affect performance due to increased context switching costs.

• Networking: At least one 10 GbE cluster is required to gain the performance benefits of NVMe SSD based Ceph cluster. For throughput-

oriented workloads, 50 GbE to 100 GbE is recommended. In accordance with standard Ceph recommendations, it is also recommended

that a Ceph storage cluster be run with two networks (a public network and a cluster network).

• OS Tunings: The Ceph IO path traverses through several kernel modules in the Linux stack. The default values of these respective modules

will not be the best fit for a Ceph configuration optimized for performance.

Baseline test results
The purpose of this test is to measure the pure IO performance of the storage at each node where the Ceph package is not installed. Each
node has a Samsung PM1725a NVMe SSD, and their performance was measured using the Fio (Flexible I/O tester) benchmark tool with libaio
IO engine. IOPS performance was evaluated for random IO workloads of a small IO size (4 KB). Sequential performance was also evaluated for
sequential IO workloads of a large IO size (128 KB). The test was performed three times, and the results were averaged. Tables 7 and 8 below
show the baseline test results.

• Fio options for random workload: Number of jobs - 8, Queue depth - 32, IO engine - libaio

• Fio options for sequential workload: Number of jobs - 1, Queue depth - 32, IO engine - libaio

Table 7: Baseline result of random tests

4 KB Random Write

Node1 Node2 Node3 Node4 Node5

Avg. Throughput (KIOPS) 4826 4760 4776 4772 4731

Avg. 99.99%th Latency (ms) 7.24 7.53 7.66 7.44 7.55

Avg. Latency (ms) 0.53 0.54 0.54 0.54 0.54

4 KB Random Read

Avg. Throughput (KIOPS) 5590 5537 5465 5655 5462

Avg. 99.99%th Latency (ms) 2.98 2.59 1.94 3.13 1.53

Avg. Latency (ms) 0.46 0.46 0.47 0.45 0.47

11

Configurations and Benchmark results

Benchmark configurations and results
The following sections provide the result of synthetic benchmark performance for all-flash based Ceph clusters using PM1725a NVMe SSD.

The test was conducted in the RBD-based (RADOS Block Device) storage pool, which is the block storage component for Ceph. Workloads

were generated using the Fio benchmark with 10 client servers. Before starting the test, we created 200 RBD images that generated a total of

15 TB of data. We then applied a 2x replication, resulting in the entire size of the data stored in the cluster being 30 TB.

• 10 Clients x 20 RBD images per client x 75 GB RBD image size = 15 TB (2x Replication: 15 TB x 2 = 30 TB)

A Random test was evaluated for a 4 KB small IO workload with number of jobs 8 and queue depth 32 per Fio instance. A sequential test was

evaluated for 128 KB large IO workload with number of jobs 1 and queue depth 32 per Fio instance. We also measured latency variation across

each test. The test was performed three times, and the results were averaged.

Table 8: Baseline result of sequential tests

128 KB Sequential Write

Node1 Node2 Node3 Node4 Node5

Avg. Throughput (GB/s) 19.8 19.6 19.6 19.6 19.6

Avg. 99.99%th Latency (ms) 9.76 10.07 9.63 9.50 9.72

Avg. Latency (ms) 1.97 2.00 2.00 1.99 1.99

128 KB Sequential Read

Avg. Throughput (GB/s) 29.8 29.6 29.8 29.9 29.9

Avg. 99.99%th Latency (ms) 1.88 1.93 1.97 1.86 1.88

Avg. Latency (ms) 1.31 1.32 1.31 1.31 1.31

Figure 4: Test environment topology
 Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.

Storage Node (x5)

Ceph OSD + MON + MGR

Ceph OSD

Ceph OSD

Ceph OSD

Ceph OSD

Client (x10)
Load generation with Flo

Cl
us

te
r N

et
w

or
k

Pu
bl

ic
 N

et
w

or
k

12

Configurations and Benchmark results

Table 9: Benchmark configurations

Details

Ceph storage type RBD (RADOS Block Device)

Load generation tool Fio 3.14

Replication factor 2x

of client node 10

of client RBD image 200 (20 RBD images per client)

RBD image size 75 GB

of monitor daemon 1

of manager daemon 1

4 KB Random read workload

We measured the performance and latency of 4 KB random reads with increasing queue depths on 200 clients. At a queue depth of 32, 4

KB random read performance was measured at an average of 2255K IOPS, with an average latency of 2.85ms and a tail latency (99.99%th

latency) of 153.21ms. As the queue depths increased, performance and latency tended to increase. Tail latency (99.99%th latency) increased

significantly at queue depths of 8 and higher.

QD1 QD2 QD4 QD8 QD16 QD32

Avg. Throughput (KIOPS) 621 1049 1515 1952 2144 2255

Avg. 99%th Latency (ms) 0.48 0.66 1.16 2.60 6.01 10.36

Avg. 99.99%th Latency (ms) 4.36 5.40 7.44 11.42 103.59 153.21

Avg. Latency (ms) 0.32 0.38 0.53 0.82 1.50 2.85

Figure 6: Result of 4 KB random read performance and latency
Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.

Table 11: Result of random read test

KI
O

PS

La
te

nc
y(

m
s)

4 KB Random Read (@200 Clients)

0.00

600.00

1200.00

1800.00

2400.00

0.00

40.00

80.00

120.00

160.00

QD1 QD2 QD8QD4 QD16 QD32

2255
21441952

1515
1049

621

Avg. 99%th Latency Avg. 99.99%th Latency Avg. LatencyIOPS

QD1 QD2 QD4 QD8 QD16 QD32

Avg. Throughput (KIOPS) 128 179 244 327 417 493

Avg. 99%th Latency (ms) 6.21 6.93 9.49 12.26 17.44 34.59

Avg. 99.99%th Latency (ms) 11.87 12.22 15.44 21.10 34.16 74.20

Avg. Latency (ms) 1.57 2.23 3.28 4.89 7.67 12.97

Figure 5: Result of 4 KB random write performance and latency
Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.

Table 10: Result of random write test

KI
O

PS

La
te

nc
y(

m
s)

4 KB Random Write (@200 Clients)

0.00

125.00

250.00

375.00

500.00

0.00

20.00

40.00

60.00

80.00

QD1 QD2 QD8QD4 QD16 QD32

493
417

327
244

179
128

Avg. 99%th Latency Avg. 99.99%th Latency Avg. LatencyIOPS

4 KB Random write workload

We measured the performance and latency of 4 KB random writes with increasing queue depths on 200 clients. At a queue depth of 32, 4 KB

random write performance was measured at an average of 493K IOPS, with an average latency of 12.97ms and an average tail latency (99.99%th

latency) of 74.20ms. As queue depth increased, performance and latency tended to increase. Tail latency (99.99%th latency) increased

significantly at queue depths of 16 and higher.

13

Configurations and Benchmark results

We also measured the variation in random read latency as the total number of clients increased. (Fio benchmark option is set to number of jobs 1,

queue depth 1). As shown in Figure 7 below, the tail latency (99.99%th latency) remained within a certain fixed range, even though the total

number of clients gradually increased.

Figure 7: Result of 4 KB Random read latency variation
Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.

Table 12: Latency variation of random read test

20 40 60 80 100 120 140 180 200

Avg. 99.99%th
Latency (ms)

3.02 3.11 3.62 3.92 3.41 4.17 4.14 4.30 4.45

Avg. Latency
(ms)

0.31 0.28 0.28 0.28 0.27 0.29 0.30 0.31 0.31

La
te

nc
y

(m
s)

4 KB Random Read - 99.99%th Latency (W1, QD1)

0.00

1.25

2.50

3.75

5.00

20 40 8060 100 120 140 180 200

Avg. 99.99%th Latency Avg. Latency

128 KB Sequential write workload

Average throughput for 128 KB sequential writes was 18.8 GB/s in 200 clients. Latency increased steadily as the number of clients increased,

while throughput remained relatively constant once the number of clients reached 80.

Figure 8: Result of 128 KB Sequential write performance and latency
Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.

Table 13: Result of sequential write test

20 40 60 80 100 120 140 180 200

Avg. Throughput
(GB/s)

12.8 17.3 19.1 19.5 19.2 19.5 19.0 19.1 18.8

Avg. Latency
(ms)

6.10 9.05 12.30 16.04 20.31 24.03 28.81 32.76 37.50

Th
ro

ug
hp

ut
 (G

B/
s)

La
te

nc
y(

m
s)

128 KB Sequential Write (W1, QD32)

0.00

5.00

10.00

15.00

20.00

0.00

10.00

20.00

30.00

40.00

20 40 8060 100 120 140 180 200

17.3

of clients

Avg. LatencyThroughput

12.8

19.1 19.5 19.2 19.5 19.0 19.1 18.8

128 KB Sequential read workload

The average throughput for 128 KB sequential reads was 51.6 GB/s in 200 clients. Latency increased steadily as the number of clients

increased, while throughput remained relatively constant once the number of clients reached 100.

Table 14: Result of sequential read testFigure 9: Result of 128 KB Sequential read performance and latency
Copyright © 2020 Samsung Electronics Co., Ltd. All Rights Reserved.

20 40 60 80 100 120 140 180 200

Avg. throughput
(GB/s)

22.4 38.9 47.5 50.3 51.0 51.6 51.9 51.5 51.6

Avg. Latency
(ms)

3.50 4.04 5.02 6.39 7.83 9.39 10.90 12.80 14.22

Th
ro

ug
hp

ut
 (G

B/
s)

La
te

nc
y(

m
s)

128 KB Sequential Read (W1, QD32)

0.00

15.00

30.00

45.00

60.00

0.00

4.00

8.00

12.00

16.00

20 40 8060 100 120 140 180 200

38.9

of clients

Avg. LatencyThroughput

22.4

47.5
50.3 51.0 51.6 51.9 51.5 51.6

14

Conclusion

Appendix

Samsung PM1725a NVMe SSD is optimized for enterprise environments and delivers consistently high performance, making it a perfect

solution for software-defined storage such as Red Hat Ceph Storage.

Samsung has designed a performance-optimizing, all-flash based Ceph cluster using PM1725a and Red Hat Ceph Storage, and was able to

achieve over 2.2M 4 KB random read performance and excellent sequential performance.

Equipped with its expertise and experience in developing cutting-edge SSD technology, Samsung’s Memory Division is committed to

supporting your data centers to run at their highest levels of performance.

ceph.conf
[client]

rbd_cache = False

rbd_cache_writethrough_until_flush = False

Please do not change this file directly since it is

managed by Ansible and will be overwritten

[global]

auth client required = none

auth cluster required = none

auth service required = none

cluster network = 192.168.44.0/24

debug asok = 0/0

debug auth = 0/0

debug bluefs = 0/0

debug bluestore = 0/0

debug buffer = 0/0

debug client = 0/0

debug context = 0/0

debug crush = 0/0

debug filer = 0/0

debug filestore = 0/0

debug finisher = 0/0

debug hadoop = 0/0

debug heartbeatmap = 0/0

debug journal = 0/0

debug journaler = 0/0

debug lockdep = 0/0

debug log = 0/0

debug mds = 0/0

debug mds_balancer = 0/0

debug mds_locker = 0/0

debug mds_log = 0/0

debug mds_log_expire = 0/0

debug mds_migrator = 0/0

debug mon = 0/0

debug monc = 0/0

debug ms = 0/0

debug objclass = 0/0

debug objectcacher = 0/0

debug objecter = 0/0

debug optracker = 0/0

debug osd = 0/0

debug paxos = 0/0

debug perfcounter = 0/0

debug rados = 0/0

debug rbd = 0/0

debug rgw = 0/0

debug rocksdb = 0/0

debug throttle = 0/0

debug timer = 0/0

debug tp = 0/0

debug zs = 0/0

fsid = b229189e-ef00-493e-97ce-80f9106ef653

mon pg warn max per osd = 1600

mon_allow_pool_delete = True

mon_host = 192.168.43.8

mon_initial_members = ceph-node8

mon_max_pg_per_osd = 1600

ms_crc_data = False

ms_crc_header = True

ms_type = async

osd objectstore = bluestore

osd_pool_default_size = 2

osd_pool_min_size = 1

perf = True

public network = 192.168.43.0/24

rocksdb_perf = True

[mon]

mon_allow_pool_delete = True

mon_health_preluminous_compat = True

mon_max_pool_pg_num = 166496

mon_osd_down_out_interval = 300

[osd]

bluestore_cache_autotune = 0

bluestore_cache_kv_max = 200G

bluestore_cache_kv_ratio = 0.2

bluestore_cache_meta_ratio = 0.8

bluestore_cache_size_ssd = 32G

bluestore_csum_type = none

bluestore_extent_map_shard_max_size = 200

bluestore_extent_map_shard_min_size = 50

bluestore_extent_map_shard_target_size = 100

bluestore_prefer_deferred_size = 0

bluestore_rocksdb_options =

compression=kNoCompression,max_write_

buffer_number=64,min_write_buffer_number_to_

merge=32,recycle_log_file_num=64,compaction_

style=kCompactionStyleLevel,write_buffer_

size=4MB,target_file_size_base=4MB,max_

background_compactions=64,level0_file_num_

compaction_trigger=64,level0_slowdown_writes_

trigger=128,level0_stop_writes_trigger=256,max_

bytes_for_level_base=6GB,compaction_

threads=32,flusher_threads=8,compaction_

readahead_size=2MB

osd memory target = 5887072665

15

Appendix

osd_map_share_max_epochs = 100

osd_max_backfills = 5

osd_max_pg_log_entries = 10

osd_memory_target = 10737418240

osd_min_pg_log_entries = 10

osd_op_num_shards = 8

osd_op_num_threads_per_shard = 2

osd_pg_log_dups_tracked = 10

osd_pg_log_trim_min = 10

osds.yml
dummy:

osd_scenario: lvm

lvm_volumes:

- data : lvm0

data_vg : vg_data0

wal : lvm0

wal_vg : vg_wal

db : lvm0

db_vg : vg_db

- data : lvm0

data_vg : vg_data1

wal : lvm1

wal_vg : vg_wal

db : lvm1

db_vg : vg_db

- data : lvm0

data_vg : vg_data2

wal : lvm2

wal_vg : vg_wal

db : lvm2

db_vg : vg_db

- data : lvm0

data_vg : vg_data3

wal : lvm3

wal_vg : vg_wal

db : lvm3

db_vg : vg_db

- data : lvm0

data_vg : vg_data4

wal : lvm4

wal_vg : vg_wal

db : lvm4

db_vg : vg_db

- data : lvm0

data_vg : vg_data5

wal : lvm5

wal_vg : vg_wal

db : lvm5

db_vg : vg_db

- data : lvm0

data_vg : vg_data6

wal : lvm6

wal_vg : vg_wal

db : lvm6

db_vg : vg_db

- data : lvm0

data_vg : vg_data7

wal : lvm7

wal_vg : vg_wal

db : lvm7

db_vg : vg_db

- data : lvm1

data_vg : vg_data0

wal : lvm8

wal_vg : vg_wal

db : lvm8

db_vg : vg_db

- data : lvm1

data_vg : vg_data1

wal : lvm9

wal_vg : vg_wal

db : lvm9

db_vg : vg_db

- data : lvm1

data_vg : vg_data2

wal : lvm10

wal_vg : vg_wal

db : lvm10

db_vg : vg_db

- data : lvm1

data_vg : vg_data3

wal : lvm11

wal_vg : vg_wal

db : lvm11

db_vg : vg_db

- data : lvm1

data_vg : vg_data4

wal : lvm12

wal_vg : vg_wal

db : lvm12

db_vg : vg_db

- data : lvm1

data_vg : vg_data5

wal : lvm13

wal_vg : vg_wal

db : lvm13

db_vg : vg_db

- data : lvm1

data_vg : vg_data6

wal : lvm14

wal_vg : vg_wal

db : lvm14

db_vg : vg_db

- data : lvm1

data_vg : vg_data7

wal : lvm15

wal_vg : vg_wal

db : lvm15

db_vg : vg_db

all.yml
dummy:

fetch_directory: ~/ceph-ansible-

keys

mon_group_name: mons

osd_group_name: osds

client_group_name: clients

mgr_group_name: mgrs

ceph_repository_type: iso

ceph_repository: rhcs

ceph_rhcs_version: 3

ceph_rhcs_iso_path: "{{ ceph_

stable_rh_storage_iso_path |

default('/home/cephtest/rhceph-

3.2-rhel-7-x86_64.iso') }}"

ceph_rhcs_mount_path: "{{ ceph_

stable_rh_storage_mount_path |

default('/tmp/rh-storage-mount') }}"

ceph_rhcs_repository_path:

"{{ ceph_stable_rh_storage_

repository_path | default('/tmp/rh-

storage-repo') }}" # where to copy

iso's content

fsid: "{{ cluster_uuid.stdout }}"

generate_fsid: true

monitor_interface: p1p2

ceph_conf_overrides:

global:

mon_initial_members: ceph-node8

mon_host: 192.168.43.8

auth client required: none

auth cluster required: none

auth service required: none

cluster network: 192.168.44.0/24

public network: 192.168.43.0/24

ms_type: async

ms_crc_data: False

ms_crc_header: True

debug asok: 0/0

debug auth: 0/0

debug bluefs: 0/0

debug bluestore: 0/0

debug buffer: 0/0

debug client: 0/0

debug context: 0/0

debug crush: 0/0

debug filer: 0/0

debug filestore: 0/0

debug finisher: 0/0

debug hadoop: 0/0

debug heartbeatmap: 0/0

debug journal: 0/0

debug journaler: 0/0

debug lockdep: 0/0

debug log: 0/0

debug mds: 0/0

debug mds_balancer: 0/0

debug mds_locker: 0/0

debug mds_log: 0/0

debug mds_log_expire: 0/0

debug mds_migrator: 0/0

debug mon: 0/0

debug monc: 0/0

debug ms: 0/0

debug objclass: 0/0

debug objectcacher: 0/0

debug objecter: 0/0

debug optracker: 0/0

debug osd: 0/0

debug paxos: 0/0

debug perfcounter: 0/0

debug rados: 0/0

debug rbd: 0/0

debug rgw: 0/0

debug rocksdb: 0/0

debug throttle: 0/0

debug timer: 0/0

Appendix

About Samsung Electronics Co., Ltd.
Samsung inspires the world and shapes the future with transformative ideas and technologies. The company is redefining the worlds of TVs,
smartphones, wearable devices, tablets, digital appliances, network systems, and memory, system LSI, foundry, and LED solutions. For the latest news,
please visit the Samsung Newsroom at news.samsung.com.

Copyright © 2020 Samsung Electronics Co., Ltd. All rights reserved. Samsung is a registered trademark of Samsung Electronics Co., Ltd. Specifications and designs are subject to
change without notice. Nonmetric weights and measurements are approximate. All data were deemed correct at time of creation. Samsung is not liable for errors or omissions. All
brand, product, service names and logos are trademarks and/or registered trademarks of their respective owners and are hereby recognized and acknowledged.

Red Hat®, Red Hat® Enterprise Linux® are trademarks or registered trademarks of Red Hat, in the United States and other countries. Ceph is a trademark or registered trademark
of in the United States and other countries. Linux® is the registered trademark of Linus Torvalds and other countries. The OpenStack® Word Mark and OpenStack Logo are either
registered or trademarks/service marks of the OpenStack Foundation, in the United States and other the OpenStack Foundation's permission. We are not affiliated with, endorsed
or sponsored Foundation, or the OpenStack community. Intel® and Intel® Xeon® are trademarks of Intel subsidiaries. Mellanox® and ConnectX® are registered trademarks of
Mellanox Technologies, product, or service names may be trademarks or service marks of others.

Samsung Electronics Co., Ltd.
129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16677, Korea www.samsung.com 2020-03

Legal and Disclaimer
※ Evaluation results may vary depending on the server environment and settings.

debug tp: 0/0

debug zs: 0/0

mon pg warn max per osd: 1600

mon_allow_pool_delete: True

mon_max_pg_per_osd: 1600

osd objectstore: bluestore

osd_pool_default_size: 2

osd_pool_min_size: 1

perf: True

rocksdb_perf: True

mon:

mon_allow_pool_delete: True

mon_health_preluminous_compat: True

mon_osd_down_out_interval: 300

mon_max_pool_pg_num: 166496

osd:

osd_min_pg_log_entries: 10

osd_max_pg_log_entries: 10

osd_memory_target: 10737418240

osd_pg_log_dups_tracked: 10

osd_pg_log_trim_min: 10

bluestore_cache_kv_max: 200G

bluestore_cache_kv_ratio: 0.2

bluestore_cache_meta_ratio: 0.8

bluestore_cache_size_ssd: 32G

bluestore_csum_type: none

bluestore_extent_map_shard_max_size: 200

bluestore_extent_map_shard_min_size: 50

bluestore_extent_map_shard_target_size: 100

bluestore_prefer_deferred_size: 0

bluestore_cache_autotune: 0

osd_map_share_max_epochs: 100

osd_max_backfills: 5

osd_op_num_shards: 8

osd_op_num_threads_per_shard: 2

bluestore_rocksdb_options:

compression=kNoCompression,max_write_

buffer_number=64,min_write_buffer_number_to_

merge=32,recycle_log_file_num=64,compaction_

style=kCompactionStyleLevel,write_buffer_

size=4MB,target_file_size_base=4MB,max_

background_compactions=64,level0_file_num_

compaction_trigger=64,level0_slowdown_writes_

trigger=128,level0_stop_writes_trigger=256,max_

bytes_for_level_base=6GB,compaction_

threads=32,flusher_threads=8,compaction_

readahead_size=2MB

client:

rbd_cache: false

rbd_cache_writethrough_until_flush: false

os_tunning_params:

- { name: fs.aio-max-nr, value: 1048576 }

- { name: kernel.sched_min_granularity_ns, value:

10000000 }

- { name: kernel.sched_wakeup_granularity_ns,

value: 15000000 }

- { name: kernel.pid_max, value: 4194303 }

- { name: fs.file-max, value: 26234859 }

- { name: vm.zone_reclaim_mode, value: 0 }

- { name: vm.swappiness, value: 1 }

- { name: vm.dirty_ratio, value: 10 }

- { name: vm.dirty_background_ratio, value: 5 }

- { name: net.ipv4.tcp_rmem, value: "4096 87380

134217728" }

- { name: net.ipv4.tcp_wmem, value: "4096 65536

134217728" }

- { name: net.core.rmem_max, value: 268435456 }

- { name: net.core.wmem_max, value: 268435456 }

- { name: net.ipv4.tcp_tw_reuse, value: 1 }

- { name: net.ipv4.tcp_fin_timeout, value: 10 }

- { name: net.ipv4.tcp_slow_start_after_idle, value: 0 }

- { name: net.ipv4.conf.all.send_redirects, value: 0 }

- { name: net.ipv4.conf.all.accept_redirects, value: 0 }

- { name: net.ipv4.conf.all.accept_source_route,

value: 0 }

- { name: net.ipv4.tcp_mtu_probing, value: 1 }

- { name: net.ipv4.tcp_timestamps, value: 0 }

- { name: net.core.netdev_max_backlog, value:

50000 }

- { name: net.ipv4.tcp_max_syn_backlog, value:

30000 }

- { name: net.ipv4.tcp_max_tw_buckets, value:

2000000 }

